Decentralized event-based control: Stability analysis and experimental evaluation
نویسندگان
چکیده
Event-based control aims at reducing the amount of information which is communicated between sensors, actuators and controllers in a networked control system. The feedback link is only closed at times at which an event indicates the need for an information update to retain a desired performance. Between consecutive event times the control loop acts as a continuous system, whereas at the event times it performs a state jump. Thus, the event-based control loop belongs to the class of hybrid dynamical systems. In this paper a new method for decentralized event-based control is proposed. Two methods are presented for the stability analysis of the decentralized event-based state feedback control of physically interconnected systems. The comparison principle leads to a stability criterion that provides an upper bound for the coupling strength for which the stability of the uncoupled event-based control loops implies ultimate boundedness of the interconnected event-based system. It is shown that ultimate boundedness of the event-based state-feedback loop is implied by the asymptotic stability of the continuous state-feedback system. Furthermore, it is explained how the number of events can be reduced by estimating the interconnection signals between the subsystems and two different estimation methods are proposed. The derived methods are demonstrated for a thermofluid process by simulation and experiments. © 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Adaptive Observer-Based Decentralized Scheme for Robust Nonlinear Power Flow Control Using HPFC
This paper investigates the robust decentralized nonlinear control of power flow in a power system using a new configuration of UPFC. This structure comprises two shunt converters and one series capacitor called as hybrid power flow controller (HPFC). A controller is designed via control Lyapunov function (CLF) and adaptive observer to surmount the problems of stability such as tracking desired...
متن کاملThird-order Decentralized Safe Consensus Protocol for Inter-connected Heterogeneous Vehicular Platoons
In this paper, the stability analysis and control design of heterogeneous traffic flow is considered. It is assumed that the traffic flow consists of infinite number of cooperative non-identical vehicular platoons. Two different networks are investigated in stability analysis of heterogeneous traffic flow: 1) inter-platoon network which deals with the communication topology of lead vehicles and...
متن کاملEvaluation of Decentralized Event-Triggered Control Strategies for Cyber-Physical Systems
Energy constraint long-range wireless sensor/ actuator based solutions are theoretically the perfect choice to support the next generation of city-scale cyber-physical systems. Traditional systems adopt periodic control which increases network congestion and actuations while burdens the energy consumption. Recent control theory studies overcome these problems by introducing aperiodic strategies...
متن کاملStability analysis of interconnected event-based control loops ⋆
In event-based control the feedback link within a control loop is only closed when an event indicates the need for information exchange among the sensors, controller and actuators to maintain a required loop performance. The event-based control loop is a hybrid dynamical system, which is characterized by a sequence of continuous state flows and discontinuous state jumps at the event times. This...
متن کاملDecentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks
In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...
متن کامل